Kendriya Vidyalaya Sangathan Bhopal Region

SET - III

First Pre- Board Session 2020-21

Class X

Mathematics- Standard (041)

Marking - Scheme

	Part - A			
1	3600	1		
	Or			
	5x11 ² x23			
2	p ≠ 4	1		
3	no real	1		
4	14 ,38 or 20	1		
5	625:81	1		
6	350 cm ²	1		
7	√2 – 1	1		
8	mean	1		
9	k = 10	1		
10	$\frac{3}{26}$	1		
11	k = 1 or $k = 4$			
12	Step ¹ / ₂ mark	1		
	Correct answer: 23 ¹ / ₂ mark			
	OR			
	Step ¹ / ₂ mark			
	Correct answer : -3 ¹ / ₂ mark			
13	Use of Area of circle ¹ / ₂ mark	1		
	Correct answer: D=52 cm ¹ / ₂ mark			
14	Using Area of Quadrant = $\frac{1}{\pi} \pi r^2$,			
	r = 7 cm, $2r = 14 cm$			
15	Total surface area of the solid = $2\pi rh + \pi r^2 + \pi rl$			
16	$\beta - \alpha = 30^{\circ}$ or 30°			
	SECTION-II			
Q17	(a) (III) $\sqrt{10}$			
	(b) (1)9			
	(0) (1)0			

	(c) $(IV)\sqrt{20}$	
	(d) (IV) (2.0,8.5)	
	(e) (I) (13,8)	
Q18	(a) (III) 90 ⁰	1X4=4
	(b) (II) SAS	
	(c)(II) 4:9	
	(d) (IV) Converse of Pythagoras theorem	
	(e) (III)24	
Q19	(a)(II) (4, 1)	1X4=4
	(b)(I)intersects x-axis	
	(c)parabola	
	(d) (II) $x^2 - 3x - 2$	
	(e) (I) -1,-1	
Q20	(a)(IV) 6.2hectares	1X4=4
	(b) (II)7	
	(c) (III) median	
	(d) (II) 5-7	
	(e) (l) 10	
21	LCM × HCF = Product of two numbers	1
	LCM = = 22338	1
22	α + β =5 and $\alpha\beta$ =k	
	α-β=1	
	$(\alpha-\beta)^2=1^2$	1
	$(\alpha+\beta)^2-4\alpha\beta=1$	
	25-4k=1	
	K=6	1
		1

23	P (x, y) is equidistant from the point A(3, 6) and B($-3, 4$)	
	PA = PB	
	Getting relation $3x + y - 5 = 0$	1
		1
24	Correct prove	2
25	Correct construction and justification	2
26	a=20 d=-3/4 then	
	a _n < 0	1
	a+(n-1)d<0	
	20+(n-1)(-3/4)<0	
	83-3n<0	1
	3n>83 => n=28	
	Or	1
	$S_m = m/2\{(a+(m-1)d\})$	
	$S_n = n/2\{(a+(n-1)d\})$	1
	$S_{m+n}=0$ (since $S_m=S_n \implies a=-(m+n)$	
27	For correct proof	3
		5
28	Pipe A take x hours and Pipe B takes x hours to fill the pool separately	
20	1/x + 1/y = 1/12(1)	
	Now Let $1/x = P \& 1/y = Q$ then	1
	P + Q = 1/12 $\Rightarrow 12P + 12O = 1 (3)$	
	And	
	4P + 9Q = 1/2	1
	$\Rightarrow 8P + 18Q = 1 (4)$ Now solving equation 3 & 4	1
	$\Rightarrow -30Q = -1$	
	$\Rightarrow Q = 1/30$	
	now put value of O in equation 3	
	We get $P=1/20$	
	So x=20 and y=30	1

29	x=-5 so put in q.e. 2x ² +px-15=0	1		
	p=7			
	put p in q.e. $p(x^2+x)+k=0$	1		
	7x ² +7x+k=0			
	on solving k=7/4	1		
30	Let TR – v			
	Since OT is perpendicular bisector of PQ.			
	Therefore, PR=QR=4cm	1		
	In right triangle OTP and PTR, we have,	1		
	$TP^2 = TR^2 + PR^2$			
	Also, $OT^2 = TP^2 + OP^2$			
	$OT^2 = (TR^2 + PR^2) + OP^2$			
	$(y+3)^2=y^2+16+25$ (OR = 3, as OR ² = OP ² - PR ²)			
	\Rightarrow 6y=32	1		
	$\frac{16}{3}$			
	$\Rightarrow y= 3$ $\Rightarrow TD^2 - TD^2 + DD^2$			
	$ \begin{array}{c} -1r - 1K + rK \\ (16)^2 \\ 256 \\ 400 \end{array} $			
	$\Rightarrow TP^{2} = \left(\frac{230}{9}\right) + 4^{2} = \frac{230}{9} + 16 = \frac{400}{9}$			
	20			
	\Rightarrow TP= ³ cm			
31	For correct diagram	1⁄2		
	For writing Given & To Prove	1/2		
	For correct proof			
32	Given: diameter of the well = 3 m	2		
02	\rightarrow Beding $-\frac{3}{3}$	1		
	\Rightarrow Radius = $\frac{1}{2}$ m			
	Depth of the well $= 14 \text{ m}$			
	Volume of the earth taken out from the well = $\pi r^2 h$			
	$(3)^2$ $\pi \times 9 \times 14$ 63			
	$=\pi\left(\frac{3}{2}\right)\times 14=\frac{\pi\times3\times14}{4}=\frac{63}{2}\pi\mathrm{m}^{3}$			

33Area of shaded region =area of square ABCD -(area of R1+area of R2+area of R3+area of R4) 57cm²1 $\frac{14}{14}$ 1 $\frac{14}{14}$ 34For correct figure Let AB be the tower. D is the initial and C is the final position of the car respectively. Since man is standing at the top of the tower so, Angles of depression are measured from A. BC is the distance from the foot of the tower to the car. In right ΔABC, tan 60° = AB/BC $\sqrt{3}$ = AB/BC BC = AB/ $\sqrt{3}$ AB = $\sqrt{3}$ BC Step 2: In right ΔABD, tan 30° = AB/BD1		∴ Earth taken out from the well evenly spread to form an embankment having height <i>h</i> and width of embankment around the well is 4 m. ∴ External radius (R) = radius of well + width of the embankment = $\frac{3}{2}$ m + 4 m = $\frac{11}{2}$ m Internal radius = $\frac{3}{2}$ m = radius of well Volume of the earth used for embankment = π (R ² - r ²) <i>h</i> = $\pi \left[\left(\frac{11}{2}\right)^2 - \left(\frac{3}{2}\right)^2 \right] h$ m ³ = $\pi \left(\frac{121}{4} - \frac{9}{4}\right) h$ m ³ = $\pi \left(\frac{112}{4}\right) h$ m ³ = π (28) <i>h</i> m ³ According to question, $\frac{63}{2}\pi = \pi \times 28 h \implies h = \frac{63}{2 \times 28} = \frac{9}{8} = 1.125$ m	1
Area of shaded region =area of square ABCD -(area of R1+area of R2+area of R3+area of R4)1 $\frac{14}{43}$ 57 cm^2 Area of unshaded region =(area of R1+area of R2+area of R4)1 $\frac{14}{43}$ 43 cm^2 1 43 cm^2 1 34 For correct figure Let AB be the tower. D is the initial and C is the final position of the car respectively. Since man is standing at the top of the tower so, Angles of depression are measured from A. BC is the distance from the foot of the tower to the car. In right Δ ABC, tan 60° = AB/BC $\sqrt{3}$ = AB/BC BC = AB/ $\sqrt{3}$ AB = $\sqrt{3}$ BC Step 2: In right Δ ABD, tan 30° = AB/BD1	33	Ra R2 Rt C	
JointArea of unshaded region =(area of R1+area of R2+area of R3+area of R4)43cm²34For correct figureLet AB be the tower.D is the initial and C is the final position of the car respectively.Since man is standing at the top of the tower so, Angles of depression are measured from A.BC is the distance from the foot of the 		Area of shaded region =area of square ABCD –(area of R1+area of R2+area of R3+area of R4)	1 1⁄2
43cm ² 34 For correct figure Let AB be the tower. D is the initial and C is the final position of the car respectively. Since man is standing at the top of the tower so, Angles of depression are measured from A. BC is the distance from the foot of the tower to the car. In right $\triangle ABC$, tan 60° = AB/BC BC = AB/V3 AB = $\sqrt{3}$ BC Step 2: In right $\triangle ABD$, tan 30° = AB/BD		Area of unshaded region =(area of R1+area of R2+area of R3+area of R4)	1 1⁄2
34 For correct figure Let AB be the tower. D is the initial and C is the final position of the car respectively. Since man is standing at the top of the tower so, Angles of depression are measured from A. BC is the distance from the foot of the tower to the car. In right $\triangle ABC$, tan 60° = AB/BC $\forall 3$ = AB/BC BC = AB/ $\forall 3$ AB = $\forall 3$ BC Step 2: In right $\triangle ABD$, tan 30° = AB/BD		43cm ²	
34For correct figure1Let AB be the tower.D is the initial and C is the final position of the car respectively.Image: Correct figureSince man is standing at the top of the tower so, Angles of depression are measured from A.Image: Correct figureBC is the distance from the foot of the tower to the car. In right ΔABC, tan 60° = AB/BCImage: Correct figureV3 = AB/BCV3 = AB/BCV3 = AB/V3AB = $\sqrt{3}$ BCStep 2: In right ΔABD, tan 30° = AB/BDImage: Correct figure	24		1
In right $\triangle ABD$, tan 30° = AB/BD	34	For correct figure Let AB be the tower. D is the initial and C is the final position of the car respectively. Since man is standing at the top of the tower so, Angles of depression are measured from A. BC is the distance from the foot of the tower to the car. In right \triangle ABC, tan 60° = AB/BC $\sqrt{3} = AB/BC$ BC = AB/ $\sqrt{3}$ AB = $\sqrt{3}$ BC Step 2:	1
$1/\sqrt{3} = AB/BD$		In right $\triangle ABD$, tan 30° = AB/BD $1/\sqrt{3} = AB/BD$	1

35	Con	nsider the left ha	and side of the ex	pression: tanA	$-+\frac{cotA}{cotA}$	
	80.00		in4 cos4	1 - cot	$A = 1 - \tan A$	
			$\cos A$ $\pm \frac{\cos A}{\sin A}$			
		- 1-	$-\frac{\cos A}{\sin A}$ $1-\frac{\sin A}{\cos A}$	-		1
			sinA cosA	osA		1
		3 <u>23</u>	cosA si	nA		1
		sin	$\frac{A - \cos A}{\sin 4}$ $\frac{\cos A}{\cos 4}$	$-\sin A$		1
			sin ² A	cos ² A		
		$=\frac{1}{\cos^2}$	$A(\sin A - \cos A)$ +	sinA(cosA - sinA	1)	1
		07.5.5	sin ² A	cos ² A		1
		$=\frac{1}{\cos^2}$	$A(\sin A - \cos A)$	sinA(sinA - cosA)	4)	
	$- \frac{\sin^3 A}{\cos^3 A}$					
			AsinA(sinA - cos	$A) = \frac{1}{\sin A \cos A (\sin A \sin A $	$nA - \cos A$	1
		1 <u>21</u>	$\sin^3 A - \cos^3 A$			
		cos	$A \sin A (\sin A - \cos A)$	A)		
		$=\frac{(\sin \theta)}{(\sin \theta)}$	$nA - \cos A$)($\sin^2 A$	+ sinAcosA + cos	(^2A)	
		(-)	cosAsinA(s	inA - cosA		1
		$=\frac{(sn)}{s}$	$h^{-}A + \sin A \cos A + \cos A \sin A$	cos-A)		
		1907	cosAsinA			
		$=\frac{(1 - 1)^2}{2}$	+ sinAcosA)			
			cosAsinA			
		= seci	4cosecA + 1			
36	Here	, it is given that]	Median =28.5 ar	nd n= Σ fi=60		
50	Cummulative frequency table for the following data is given.					
	Here $n=60\Rightarrow 2n=30$					1
	Since, median is 28.5, median class is 20–30					
	Hence, l=20,h=10,f=20,c.f.=5+x					1
	Ther	efore, Median =	l+(f2n-cf)h			
	28.5=	=20+(2030-5-x)10			
	\Rightarrow 28.5=20+225-x					
	$\Rightarrow 8.5 \times 2 = 25 - x$					
	⇒x=	8				1
	Also	45 + x + v = 60				
	⇒v=	60-45-x=15-8	=7.			
	Henc	ce, x=8,y=7				1
						1
		Class - interval	Frequency	Cumulative frequency		
		0-10	5	5		
		10 - 20	х	5+x		
		20 - 30	20	25 + x		
		30-40	15	40 + x		
		40 - 50	у	40 + x + y		
		50 - 60	5	45 + x + y		
		Total	n = 60			1