First Pre- Board Session 2020-21
Class X
Mathematics- Standard (041)
Marking - Scheme

	Part - A	
1	$\begin{array}{\|l\|} \hline 3600 \\ \text { Or } \\ 5 \times 11^{2} \times 23 \end{array}$	1
2	$p \neq 4$	1
3	no real	1
4	14,38 or 20	1
5	625:81	1
6	$350 \mathrm{~cm}^{2}$	1
7	$\sqrt{ } 2-1$	1
8	mean	1
9	$k=10$	1
10	$\frac{3}{26}$	1
11	$k=1$ or $k=4$	
12	Step $1 / 2$ mark Correct answer : 23 $1 / 2$ mark OR Step $1 / 2$ mark Correct answer :-3 $1 / 2$ mark	1
13	Use of Area of circle $1 / 2$ mark Correct answer: $D=52 \mathrm{~cm}$ $1 / 2$ mark	1
14	Using Area of Quadrant $=\frac{1}{4} \pi r^{2}$, $r=7 \mathrm{~cm}, 2 \mathrm{r}=14 \mathrm{~cm}$	1
15	Total surface area of the solid $=2 \pi r h+\pi r^{2}+\pi r l$	1
16	$\beta-\alpha=30^{\circ}$ or 30°	1
	SECTION-II	
Q17	(a) (III) $\sqrt{10}$	
	(b) (I)8	

\begin{tabular}{|c|c|c|}
\hline \& (c) (IV) $\sqrt{20}$ \& \\
\hline \& (d) (IV) $(2.0,8.5)$ \& \\
\hline \& (e) (I) (13,8) \& \\
\hline Q18 \& (a) (III) 90^{0} \& 1X4=4 \\
\hline \& (b) (II) SAS \& \\
\hline \& (c)(II) $4: 9$ \& \\
\hline \& (d) (IV) Converse of Pythagoras theorem \& \\
\hline \& (e) (III) 24 \& \\
\hline Q19 \& (a)(II) (4, 1) \& 1X4=4 \\
\hline \& (b)(I)intersects x -axis \& \\
\hline \& (c) parabola \& \\
\hline \& (d) (II) $\mathrm{x}^{2}-3 x-2$ \& \\
\hline \& (e) (I) $-1,-1$ \& \\
\hline Q20 \& (a)(IV) 6.2 hectares \& 1X4=4 \\
\hline \& (b) (II) 7 \& \\
\hline \& (c) (III) median \& \\
\hline \& (d) (II) 5-7 \& \\
\hline \& (e) (I) 10 \& \\
\hline 21 \& LCM \times HCF $=$ Product of two numbers
$$
\text { LCM }==22338
$$ \& $$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$ \\
\hline 22 \& $$
\begin{aligned}
& \alpha+\beta=5 \text { and } \alpha \beta=k \\
& \alpha-\beta=1 \\
& (\alpha-\beta)^{2}=1^{2} \\
& (\alpha+\beta)^{2}-4 \alpha \beta=1 \\
& 25-4 \mathrm{k}=1 \\
& \mathrm{~K}=6
\end{aligned}
$$ \& 1

1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 23 \& \begin{tabular}{l}
\(P(x, y)\) is equidistant from the point \(A(3,6)\) and \(B(-3,4)\)
\[
\mathrm{PA}=\mathrm{PB}
\] \\
Getting relation \(3 x+y-5=0\)
\end{tabular} \& 1 \\
\hline 24 \& Correct prove \& 2 \\
\hline 25 \& Correct construction and justification \& 2 \\
\hline 26 \& \[
\begin{aligned}
\& \mathrm{a}=20 \mathrm{~d}=-3 / 4 \text { then } \\
\& \mathrm{a}_{\mathrm{n}}<0 \\
\& \mathrm{a}+(\mathrm{n}-1) \mathrm{d}<0 \\
\& 20+(\mathrm{n}-1)(-3 / 4)<0 \\
\& 83-3 \mathrm{n}<0 \\
\& 3 \mathrm{n}>83=>\mathrm{n}=28 \\
\& 0 \mathrm{r} \\
\& \mathrm{~S}_{\mathrm{m}}=\mathrm{m} / 2\{(\mathrm{a}+(\mathrm{m}-1) \mathrm{d}\} \\
\& \mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2\{(\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\} \\
\& \mathrm{S}_{\mathrm{m}+\mathrm{n}}=0 \quad
\end{aligned}
\] \& 1
1
1
1
1
1 \\
\hline 27 \& For correct proof \& 3 \\
\hline 28 \& \begin{tabular}{l}
Pipe A take \(x\) hours and Pipe B takes y hours to fill the pool separately.
\[
1 / x+1 / y=1 / 12--(1)
\] \\
Now Let \(1 / x=P \& 1 / y=Q\) then
\[
\begin{aligned}
\& \mathrm{P}+\mathrm{Q}=1 / 12 \\
\& \Rightarrow 12 \mathrm{P}+12 \mathrm{Q}=1
\end{aligned}
\] \\
And
\[
\begin{gathered}
4 \mathrm{P}+9 \mathrm{Q}=1 / 2 \\
\Rightarrow 8 \mathrm{P}+18 \mathrm{Q}=1-(4)
\end{gathered}
\] \\
Now solving equation \(3 \& 4\)
\[
\begin{aligned}
\& \Rightarrow-30 \mathrm{Q}=-1 \\
\& \Rightarrow \mathrm{Q}=1 / 30
\end{aligned}
\] \\
now put value of Q in equation 3 \\
We get \(\mathrm{P}=1 / 20\) \\
So \(x=20\) and \(y=30\)
\end{tabular} \& 1

1
1

1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline 29 \& \begin{tabular}{l}
\[
\begin{aligned}
\& x=-5 \text { so put in q.e. } 2 x^{2}+p x-15=0 \\
\& p=7 \\
\& \text { put } p \text { in q.e. } p\left(x^{2}+x\right)+k=0 \\
\& 7 x^{2}+7 x+k=0
\end{aligned}
\] \\
on solving \(\mathrm{k}=7 / 4\)
\end{tabular} \& \begin{tabular}{l}
\[
1
\] \\
1 \\
1
\end{tabular} \\
\hline 30 \& \begin{tabular}{l}
Let \(\mathrm{TR}=\mathrm{y}\) \\
Since OT is perpendicular bisector of PQ . \\
Therefore, \(\mathrm{PR}=\mathrm{QR}=4 \mathrm{~cm}\) \\
In right triangle OTP and PTR, we have,
\[
\begin{aligned}
\& \mathrm{TP}^{2}=\mathrm{TR}^{2}+\mathrm{PR}^{2} \\
\& \text { Also, } \mathrm{OT}^{2}=\mathrm{TP}^{2}+\mathrm{OP}^{2} \\
\& \mathrm{OT}^{2}=\left(\mathrm{TR}^{2}+\mathrm{PR}^{2}\right)+\mathrm{OP}^{2} \\
\& (\mathrm{y}+3)^{2}=\mathrm{y}^{2}+16+25\left(\mathrm{OR}=3, \text { as } \mathrm{OR}^{2}=\mathrm{OP}^{2}-\mathrm{PR}^{2}\right) \\
\& \Rightarrow 6 \mathrm{y}=32 \\
\& \Rightarrow \mathrm{y}=\frac{16}{3} \\
\& \Rightarrow \mathrm{TP}^{2}=\mathrm{TR}^{2}+\mathrm{PR}^{2} \\
\& \Rightarrow \mathrm{TP}=\left(\frac{16}{3}\right)^{2}+4^{2}=\frac{256}{9}+16=\frac{400}{9} \\
\& \Rightarrow \mathrm{TP}=\frac{20}{3} \mathrm{~cm}
\end{aligned}
\]
\end{tabular} \& 1

1
1
1 \\

\hline 31 \& | For correct diagram |
| :--- |
| For writing Given \& To Prove |
| For correct proof | \& \[

$$
\begin{gathered}
1 / 2 \\
1 / 2 \\
2
\end{gathered}
$$
\] \\

\hline 32 \& $$
\begin{aligned}
& \text { Given: diameter of the well }=3 \mathrm{~m} \\
& \qquad \begin{aligned}
\text { Radius } & =\frac{3}{2} \mathrm{~m}
\end{aligned} \\
& \begin{aligned}
\text { Depth of the well } & =14 \mathrm{~m}
\end{aligned} \\
& \text { Volume of the earth taken out from the well }=\pi^{2} h \\
& \qquad=\left(\frac{3}{2}\right)^{2} \times 14=\frac{\pi \times 9 \times 14}{4}=\frac{63}{2} \pi \mathrm{~m}^{3}
\end{aligned}
$$ \& 1

1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\(\because\) Earth taken out from the well evenly spread to form an embankment having height \(h\) and width of embankment around the well is 4 m . \\
\(\therefore \quad\) External radius \((\mathrm{R})=\) radius of well + width of the embankment
\[
=\frac{3}{2} m+4 m=\frac{11}{2} m
\]
\[
\text { Internal radius }=\frac{3}{2} \mathrm{~m}=\text { racius of well }
\] \\
Volume of the earth used for embankment \(=\pi\left(\mathrm{R}^{2}-r^{2}\right) h\)
\[
\begin{aligned}
\& =\pi\left[\left(\frac{11}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}\right] h \mathrm{~m}^{3}=\pi\left(\frac{121}{4}-\frac{9}{4}\right) h \mathrm{~m}^{3} \\
\& =\pi\left(\frac{112}{4}\right) h \mathrm{~m}^{3}=\pi(28) h \mathrm{~m}^{3}
\end{aligned}
\] \\
According to question,
\[
\frac{63}{2} \pi=\pi \times 28 h \Rightarrow h=\frac{63}{2 \times 28}=\frac{9}{8}=1.125 \mathrm{~m}
\]
\end{tabular} \& 1 \\
\hline 33 \& \begin{tabular}{l}
Area of shaded region =area of square ABCD -(area of R1+area of R2+area of R3+area of R4) \(57 \mathrm{~cm}^{2}\) \\
Area of unshaded region =(area of R1+area of R2+area of R3+area of R4) \\
\(43 \mathrm{~cm}^{2}\)
\end{tabular} \& \[
\begin{aligned}
\& 11 / 2 \\
\& 11 / 2
\end{aligned}
\] \\
\hline 34 \& \begin{tabular}{l}
For correct figure \\
Let \(A B\) be the tower. \\
\(D\) is the initial and \(C\) is the final position of the car respectively. \\
Since man is standing at the top of the tower so, Angles of depression are measured from \(A\). \(B C\) is the distance from the foot of the tower to the car. \\
In right \(\triangle A B C\),
\[
\tan 60^{\circ}=A B / B C
\]
\[
\begin{aligned}
\& \sqrt{ } 3=A B / B C \\
\& B C=A B / \sqrt{ } 3 \\
\& A B=\sqrt{ } 3 B C
\end{aligned}
\] \\
Step 2: \\
In right \(\triangle A B D\),
\[
\begin{aligned}
\& \tan 30^{\circ}=A B / B D \\
\& 1 / \sqrt{ } 3=A B / B D
\end{aligned}
\]
\end{tabular} \& 1

1
1
1 \\
\hline
\end{tabular}

$A B=B D / \sqrt{ } 3$
Step 3: Form step 1 and Step 2, we have
$\sqrt{ } 3 B C=B D / \sqrt{ } 3$ (Since LHS are same, so RHS are also same)
$3 B C=B D$
$3 B C=B C+C D$
$2 B C=C D$
or $B C=C D / 2$
Here, distance of $B C$ is half of $C D$. Thus, the time taken is also half.
Time taken by car to travel distance $C D=6 \mathrm{sec}$. Time taken by car to travel $B C$ $=6 / 2=3 \mathrm{sec}$.

OR

For correct figure
Let $C D$ be the height of the tower. $A B$ be the height of the building. $B C$ be the distance between the foot of the building and the tower. Elevation is 30 degree and 60 degree from the tower and the building respectively.

In right $\triangle B C D$,
$\tan 60^{\circ}=C D / B C$
$\sqrt{ } 3=50 / B C$

In right $\triangle A B C$,
$\tan 30^{\circ}=A B / B C$
$\Rightarrow 1 / \sqrt{ } 3=A B / B C$
Use result obtained in equation (1)
$A B=50 / 3 \quad$ Thus, the height of the building is $50 / 3$

\begin{tabular}{|c|c|c|}
\hline 35 \& Consider the left hand side of the expression: \(\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}\)
\[
\begin{aligned}
\& =\frac{\frac{\sin A}{\cos A}}{1-\frac{\cos A}{\sin A}}+\frac{\frac{\cos A}{\sin A}}{1-\frac{\sin A}{\cos A}} \\
\& =\frac{\frac{\sin A}{\cos A}}{\frac{\sin A-\cos A}{\sin A}}+\frac{\frac{\cos A}{\sin A}}{\frac{\cos A-\sin A}{\cos A}} \\
\& =\frac{\sin ^{2} A}{\cos A\left(\sin ^{2} A-\cos A\right)}+\frac{\cos ^{2} A}{\sin A\left(\cos ^{2} A-\sin A\right)} \\
\& =\frac{\sin ^{2} A}{\cos A(\sin A-\cos A)}-\frac{\cos ^{2} A}{\sin A(\sin A-\cos A)} \\
\& =\frac{\sin ^{3} A}{\cos A \sin A(\sin A-\cos A)}-\frac{\cos ^{3} A}{\sin A \cos A(\sin A-\cos A)} \\
\& =\frac{\sin ^{3} A-\cos { }^{3} A}{\cos A \sin A(\sin A-\cos A)} \\
\& =\frac{(\sin A-\cos A)\left(\sin 2+\sin A \cos A+\cos ^{2} A\right)}{\cos A \sin A(\sin A-\cos A)} \\
\& =\frac{\left(\sin ^{2} A+\sin A \cos A+\cos { }^{2} A\right)}{\cos A \sin A} \\
\& =\frac{(1+\sin A \cos A)}{\cos A \sin A} \\
\& =\sec A \operatorname{cosec} A+1
\end{aligned}
\] \& 1
1
1
1
1
1 \\
\hline 36 \& \begin{tabular}{l}
Here, it is given that Median \(=28.5\) and \(\mathrm{n}=\sum \mathrm{f}=60\) \\
Cummulative frequency table for the following data is given. \\
Here \(\mathrm{n}=60 \Rightarrow 2 \mathrm{n}=30\) \\
Since, median is 28.5 , median class is \(20-30\) \\
Hence, \(l=20, h=10, f=20, c . f .=5+x\) \\
Therefore, Median \(=\mathrm{l}+(\mathrm{f} 2 \mathrm{n}-\mathrm{cf}) \mathrm{h}\)
\[
\begin{aligned}
\& 28.5=20+(2030-5-x) 10 \\
\& \Rightarrow 28.5=20+225-x \\
\& \Rightarrow 8.5 \times 2=25-x \\
\& \Rightarrow x=8
\end{aligned}
\] \\
Also, \(45+\mathrm{x}+\mathrm{y}=60\)
\[
\Rightarrow y=60-45-x=15-8=7
\] \\
Hence, \(x=8, y=7\)
\end{tabular} \& 1
1

1

\hline \& | Class - interval | Frequency | Cumulative
 frequency |
| :--- | :---: | :--- |
| $0-10$ | 5 | 5 |
| $10-20$ | x | $5+x$ |
| $20-30$ | 20 | $25+x$ |
| $30-40$ | 15 | $40+x$ |
| $40-50$ | y | $40+x+y$ |
| $50-60$ | 5 | $45+x+y$ | \&

\hline \& | Total | $\mathrm{n}=60$ | |
| :--- | :--- | :--- | \&

\hline
\end{tabular}

