Marking Scheme

Q1. $2 \times 3 \times 3 \times 13$ or $2^{1} \times 3^{2} \times 13^{1}$	1
Q2. $x^{2}-2 \sqrt{ } 3 x+2$	1
Q3. $\mathrm{a}=20$ OR For Correct statement	1
Q4. $\mathrm{k}=2$	1
Q5. 2n	1
Q6. $339.12 \mathrm{~cm}^{2}$ or 108π	1
Q7.60 ${ }^{\circ}$ OR No	1
Q8. $22275 / 28 \mathrm{~cm}^{2}$ or $795.53 \mathrm{~cm}^{2}$	1
Q9. 30°	1
Q10. 90°	1
Q11. 20	1
Q12. 8	1
Q13. 30 and 20	1
Q14. 13/17 OR 1/4	1
Q15. 100 m	1
Q16. 1/8	1
Q17. (i) (b) (ii) (c) (iii) (c) (iv) (-3,0) (v) 24 sq units	1 Each(Max4)
Q18. (i) (c) (ii) (b) (iii) (b) $^{\text {(}}$ (iv) (b) \quad (v) (a)	1 Each(Max4)
Q19. (i) (c) \quad (ii) (a) or (b) \quad (iii) (b) $\begin{aligned} & \text { (iv) (d) } \\ & \text { (v) (c) }\end{aligned}$	1 Each(Max4)
Q20. (i) (d) (ii) (a) (iii) (b) (iv) (c) (v) (d)	1 Each(Max4)
Q21. Let $P(-1,6)$ divides the line joining $A(-3,10) \& B(6,-8)$ in the ratio $m_{1}: m_{2}$. Using section formula $(-1,6)=\left(\frac{m_{1} \times 6+m_{2} \times(-3)}{m_{1}+m_{2}}, \frac{m_{1} \times(-8)+m_{2} \times(10)}{m_{1}+m_{2}}\right)$ Comparing like coordinates $-1=\frac{6 m_{1}-3 m_{2}}{m_{1}+m_{2}}$ or $-m_{1}-m_{2}=6 m_{1}-3 m_{2}$ or $7 m_{1}=2 m_{2}$ or $m_{1} / m_{2}=2 / 7$ OR Using distance formula, we have $\mathrm{d}=10$ units so $10=v(2-10)^{2}+(-3-y)^{2}$ squaring both sides $\begin{aligned} & 100=(-8)^{2}+\left(9+y^{2}+6 y\right) \\ & 100=64+9+y^{2}+6 y \\ & y^{2}+6 y-27=0 \\ & y^{2}+9 y-3 y-27=0 \\ & y(y+9)-3(y+9)=0 \\ & (y-3)(y+9)=0 \\ & y=3 \text { or } y=-9 \end{aligned}$	1 1
Q22. For statement	1

\begin{tabular}{|c|c|}
\hline For diagram For proof \& 1 \\
\hline \begin{tabular}{l}
Q23. As the length of tangent drawn from an external point to a circle are equal therefore \(A P=A S, P B=B Q, C R=C Q, R D=D S\) \\
Adding above, \(A P+P B+C R+R D=A S+B Q+C Q+D S=>A B+C D=A D+B C\)
\end{tabular} \& 1 \\
\hline \begin{tabular}{l}
Q24. Draw a line segment \(A B\) of 8 cm . \\
Draw an acute angle BAX. \\
Take \(\operatorname{arc}\) A1, A2, A3 ,A4, A5 on ray AX. Such that AA1 \(=A 1 A 2=A 2 A 3=A 3 A 4=A 4 A 5\). \\
Joint \(B\) and \(A 5\). \\
Draw a line CA3 parallel to BA5. \\
Hence we get \(A C: C B=3: 2\).
\end{tabular} \& 1 \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Q25. } \sin \left(20^{\circ}+\theta\right)=\cos 30^{\circ} \\
\& =>\sin \left(20^{\circ}+\theta\right)=\sin \left(90^{\circ}-30^{\circ}\right) \\
\& =>20^{\circ}+\theta=90^{\circ}-30^{\circ} \\
\& =>\theta=60^{\circ}-20^{\circ} \\
\& =>\theta=40^{\circ}
\end{aligned}
\] \\
OR \\
As \(\cos \theta=\frac{2}{3}, \tan \theta=\frac{\sqrt{5}}{2}\) and \(\sec \theta=\frac{3}{2}\) \\
Now \(2 \sec ^{2} \boldsymbol{\vartheta}+2 \boldsymbol{\operatorname { t a n }}^{2} \boldsymbol{\vartheta}-7=2(9 / 4)+2(5 / 4)-7=7-7=0\)
\end{tabular} \& 1
1 \\
\hline \begin{tabular}{l}
Q26. In given A.P. \(3,8,13,18, \ldots . . .78 ; a=3, d=a_{2}-a_{1}=8-3=5\) \\
Let \(n\)th term of the A.P. be 78
\[
\begin{aligned}
\& a_{n}=a+(n-1) d \\
\& 78=3+(n-1) \times 5 \\
\& n=16
\end{aligned}
\]
\end{tabular} \& 1 \\
\hline \begin{tabular}{l}
Q27. \(n^{3}-n=n\left(n^{2}-1\right)=n(n-1)(n+1)\) is divided by 3 then possible reminder is 0,1 and 2 [\(\because\) if \(P=a b+r\), then \(0 \leq r<a\) by Euclid lemma] \\
\(\therefore\) Let \(\mathrm{n}=3 \mathrm{r}, 3 \mathrm{r}+1,3 \mathrm{r}+2\), where r is an integer \\
Case 1 :- when \(n=3 r\) \\
Then, \(n^{3}-n\) is divisible by \(3\left[\because n^{3}-n=n(n-1)(n+1)=3 r(3 r-1)(3 r+1)\right.\), which is divisible by 3] \\
Case2 :- when \(\mathrm{n}=3 \mathrm{r}+1\) \\
Then, \(n^{3}-n=(3 r+1)(3 r)(3 r+2)\), it is divisible by 3 \\
Case 3:- when \(n=3 r-1\) \\
Then, \(n^{3}-n=(3 r-1)(3 r-2)(3 r)\), it is divisible by 3 \\
So \(n^{3}-n\) is divisible by 3 , where \(n\) is any positive integers \\
Now \(n^{3}-n=n\left(n^{2}-1\right)=n(n-1)(n+1)=(n-1) n(n+1)\) which is the product of three consecutive integers out of which at least one must be even. \\
Hence given expression must be divisible by 6 .
\end{tabular} \& 1

1 \\

\hline | Q28. We know that, the lengths of tangents drawn from an external point to a circle are equal. $\therefore \mathrm{TP}=\mathrm{TQ}$ $\ln \triangle T P Q, T P=T Q$ |
| :--- |
| $\Rightarrow \angle T Q P=\angle T P Q \ldots(1)$ (In a triangle, equal sides have equal angles opposite to them) |
| $\angle \mathrm{TQP}+\angle \mathrm{TPQ}+\angle \mathrm{PTQ}=1800$ (Angle sum property) $\therefore 2 \angle \mathrm{TPQ}+\angle \mathrm{PTQ}=180^{\circ}(\text { Using }(1))$ $\Rightarrow \angle \mathrm{PTQ}=180 \cong-2 \angle \mathrm{TPQ} \ldots(1)$ |
| We know that, a tangent to a circle is perpendicular to the radius through the point of | \& $1 / 2$

1 \\
\hline
\end{tabular}

contact.	1/2
$\mathrm{OP} \perp \mathrm{PT}$,	
$\therefore \angle \mathrm{OPT}=900$	
$\Rightarrow \angle \mathrm{OPQ}+\angle \mathrm{TPQ}=900$	
$\Rightarrow \angle O P Q=900-\angle T P Q$	
$\Rightarrow 2 \angle \mathrm{OPQ}=2(900-\angle \mathrm{TPQ})=1800-2 \angle \mathrm{TPQ} . .$. (2)	
From (1) and (2), we get	1
Q29. Let the number of Rs 50 notes and Rs 100	
According to the question,	
$\Rightarrow x+y=25$... (i)	1
and $50 x+100 y=2000 \ldots$ (ii)	
Multiplying equation (i) by 50 , we get $50 x+50 y=1250 \ldots$ (iii)	1
Subtracting equation (iii) from equation (ii), we get $50 y=750 \Rightarrow \mathbf{y = 1 5}$	
Putting this value in equation (i), we have $\Rightarrow \mathbf{x}=10$	1
Q30. Total no of cards i.e. outcomes are 25	
(i) cards marked with numbers which are multiples of 3 are 3,9,15,21,27,33,39 and 45	
So, P (getting a number divisible by 3) $=8 / 25$ (ii) $\mathrm{P}($ not a perfect square $)=1-\mathrm{P}$ (perfect square) $=1-3 / 25=22 / 25$	1
(iii) P (multiple of 3 and 5) $=2 / 25$	1
Q31. Height of cone $=24$ \& Radius $=6 \mathrm{~cm}$	
Vol of cone $=1 / 3 \pi r^{2} \mathrm{~h}=1 / 3 \pi \times 6^{2} \times 24=288 \pi \mathrm{~cm}^{3}$	1
Let the vol of sphere $=4 / 3 \pi r^{3}$	
Vol of sphere=Vol of cone	
$4 / 3 \pi r^{3}=288 \pi$	1
$\mathrm{r}=6 \mathrm{~cm}$	
Therefore the radius of sphere is 6 cm	
Surface area of sphere $=4 \pi \mathrm{r}^{2}=4 \times \pi \times 6^{2}=144 \pi \mathrm{~cm}^{2}$	1
Q32. Given $\cos \mathrm{A} /(1+\sin \mathrm{A})+(1+\sin \mathrm{A}) / \cos \mathrm{A}$	
On taking the LCM we get,	
$=\left\{\cos ^{2} A+(1+\sin A)^{2}\right\} / \cos A .(1+\sin A)$	1
using $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$	
	1
$=(1+1+2 \sin \mathrm{~A}) / \cos \mathrm{A}(1+\sin \mathrm{A})$	
$=2(1+\sin A) / \cos A(1+\sin A)=2 / \cos A=2 \sec A$	1
Q33. Let the altitude of the triangle be xcm and its base $=(x+10) \mathrm{cm}$.	1/2
Area of triangle $=1 / 2 \times$ Base \times height $=1 / 2 \times x \times(x+10)$	1/2
According to the Question,	
$\Rightarrow 1 / 2 x(x+10)=600$	
$\Rightarrow \mathrm{x}^{2}+10 \mathrm{x}-1200=0$	
$\Rightarrow(x+40)(x-30)=0$	1.5
$\Rightarrow \mathbf{x}=-40,30$ (As x can't be negative)	
$\Rightarrow \mathrm{x}=30$	
Altitude of triangle $=\mathbf{x}=30 \mathrm{~cm}$	
Base of triangle $\mathbf{= x + 1 0 = 3 0 + 1 0 = 4 0 ~ c m ~}$	1/2
Using Pythagoras theorem, hypotenuse $=50 \mathrm{~cm}$	
OR	

Let the numbers are $x, x+1, x+2$ As per the question, $x^{2}+(x+1)(x+2)=46$ i.e. $2 x^{2}+3 x+44=0$. Now, By solving equation, $x=-22 / 4,4$. But x can't be negative. So, Numbers will be 4,5 and 6.	$1 / 2$
Q34.	1

$\begin{aligned} & h-60=60 \mathrm{~V} 3 \\ & h=60 \mathrm{v} 3+60 \\ & h=60(1+\sqrt{ } 3) \end{aligned}$ Therefore, height of the opposite house is $60(1+\sqrt{ } 3)$ metre.	1
Q35. $\mathrm{a}_{2}=14$ and $\mathrm{a}_{3}=18$ Common difference $=a_{3}-a_{2}=18-14=4=d$ Now $\begin{aligned} & a_{2}=a+d=14 \\ & a+4=14 \\ & a=10 \end{aligned}$ Using formula for sum of first n terms of an A.P. Now, sum of 51 terms $\begin{aligned} & =\{51(2 \mathrm{a}+(50) \mathrm{d})\} / 2 \\ & =\{51(20+200)\} / 2 \\ & =\{51 \times 220\} / 2 \\ & =51 \times 110=5610 \end{aligned}$ Therefore sum of 51 terms is 5610	1 1 1
Q36. Using formula \& finding Mean=149.8 Using formula \& finding Median=151.5	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$

