KENDRIYA VIDYALAYA SANGATHAN BHOPAL REGION FIRST PRE-BOARD EXAMINATION 2020-21 Class- X Mathematics-Basic (241)

(SET-C)

Marking Scheme

Q1. $2 \times 3 \times 3 \times 13$ or $2^1 \times 3^2 \times 13^1$	1
Q2. $x^2 - 2\sqrt{3}x + 2$	1
Q3. a = 20 OR For Correct statement	1
Q4. k≠ 2	1
Q5. 2n	1
Q6. 339.12 cm ² or 108π	1
Q7. 60 ⁰ OR No	1
Q8. 22275/28 cm ² or 795.53 cm ²	1
Q9. 30 ⁰	1
Q10. 90 ⁰	1
Q11. 20	1
Q12.8	1
Q13. 30 and 20	1
Q14. 13/17 OR 1/4	1
Q15. 100 m	1
Q16. 1/8	1
Q17. (i) (b) (ii) (c) (iii) (c) (iv) (-3,0) (v) 24 sq units	1 Each(Max4)
Q18. (i) (c) (ii) (b) (iii) (b) (iv) (b) (v) (a)	1 Each(Max4)
Q19. (i) (c) (ii) (a) or (b) (iii) (b) (iv) (d) (v) (c)	1 Each(Max4)
Q20. (i) (d) (ii) (a) (iii) (b) (iv) (c) (v) (d)	1 Each(Max4)
Q21. Let P(-1, 6) divides the line joining A(-3,10) & B(6,-8) in the ratio $m_1 : m_2$.	, , ,
Using section formula	
$m_1 \times 6 + m_2 \times (-3) m_1 \times (-8) + m_2 \times (10)$	
(-1,6) = (-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-	1
Comparing like coordinates	
$-1 = \frac{6m_1 - 3m_2}{2}$	
m_1+m_2	
$or -m_1 - m_2 = 6m_1 - 3m_2$	
or $/m_1 = 2m_2$	1
or $m_1/m_2=2/7$	
Using distance formula, we have d=10 units so	
$10 = V(2 - 10)^{-} + (-3 - y)^{-}$	1
squaring both sides	
$100 = (-8)^{-} + (9 + y^{-} + 6y)$	
$100 = 64 + 9 + y^{-} + 6y$	
y + 0y - 27 = 0	
$y^{-} + 9y - 3y - 27 = 0$	
y(y + y) - z(y + y) = 0	
(y-z)(y+z) = 0	1
	1
UZZ. FOR Statement	⊥

For diagram	1
For proof	1
Q23. As the length of tangent drawn from an external point to a circle are equal	
therefore AP=AS, PB=BQ, CR=CQ, RD=DS	1
Adding above, AP+PB+ CR + RD =AS+BQ+ CQ + DS =>AB+CD=AD+BC	1
Q24. Draw a line segment AB of 8 cm.	
Draw an acute angle BAX.	
Take arc A1, A2, A3 ,A4, A5 on ray AX. Such that AA1 = A1A2 = A2A3 = A3A4 = A4A5.	1
Joint B and A5.	
Draw a line CA3 parallel to BA5.	
Hence we get AC : CB = 3 : 2.	1
Q25. sin ($20^{0} + \theta$) = cos 30^{0}	
$\Rightarrow \sin(20^{0}+\theta) = \sin(90^{0}-30^{0})$	1
$=> 20^{0} + \theta = 90^{0} - 30^{0}$	
$=> \Theta = 60^{\circ} - 20^{\circ}$	1
$=> \Theta = 40^{\circ}$	
OR	
As $cos\theta = \frac{2}{3}$, $tan\theta = \frac{\sqrt{5}}{3}$ and $sec\theta = \frac{3}{3}$	1
Now 2 sec ² ϑ + 2 tan ² ϑ - 7 =2(9/4)+2(5/4)-7 =7-7 =0	1
Q26. In given A.P. 3.8.13.1878: a=3. d=a ₂ -a ₁ =8-3=5	1
Let nth term of the A.P. be 78	
$a_n=a+(n-1)d$	
$78 = 3 + (n-1) \times 5$	
n=16	1
Q27. $n^3 - n = n(n^2-1) = n(n-1)(n+1)$ is divided by 3 then possible reminder is 0, 1 and 2	
[: if P = ab + r, then $0 \le r < a$ by Euclid lemma]	
\therefore Let n = 3r, 3r +1, 3r + 2, where r is an integer	
Case 1 :- when n = 3r	1
Then, $n^3 - n$ is divisible by 3 [:: $n^3 - n = n(n-1)(n+1) = 3r(3r-1)(3r+1)$, which is divisible by	
3]	
Case2 :- when n = 3r + 1	
Then, $n^3 - n = (3r + 1)(3r)(3r + 2)$, it is divisible by 3	1
Case 3:- when n = 3r - 1	
Then, n ³ - n = (3r -1)(3r -2)(3r) , it is divisible by 3	
So n ³ - n is divisible by 3, where n is any positive integers	
Now $n^3 - n = n(n^2-1) = n(n - 1)(n + 1) = (n - 1)n(n + 1)$ which is the product of three	
consecutive integers out of which at least one must be even.	1
Hence given expression must be divisible by 6.	
Q28. We know that, the lengths of tangents drawn from an external point to a circle	
are equal.	1/2
\therefore TP = TQ	
In ΔTPQ , TP = TQ	
$\Rightarrow \angle TQP = \angle TPQ \dots (1)$ (In a triangle, equal sides have equal angles opposite to them)	
$\angle TQP + \angle TPQ + \angle PTQ = 180^{\circ}$ (Angle sum property)	
$\therefore 2 \angle TPQ + \angle PTQ = 180^{\circ} (Using(1))$	1
$\Rightarrow \angle PTQ = 180^{\circ} - 2 \angle TPQ \dots (1)$	
We know that, a tangent to a circle is perpendicular to the radius through the point of	

contact.	1/2
$OP \perp PT$,	
∴ ∠OPT = 90º	
$\Rightarrow \angle OPQ + \angle TPQ = 90^{\circ}$	
$\Rightarrow \angle OPQ = 90^{\circ} - \angle TPQ$	
$\Rightarrow 2 \angle OPQ = 2(90^\circ - \angle TPQ) = 180^\circ - 2 \angle TPQ \dots (2)$	
From (1) and (2), we get	1
∠PTQ = 2∠OPQ	
Q29. Let the number of Rs 50 notes and Rs 100 notes be x and y.	
According to the question,	
⇒ x + y = 25 (i)	1
and 50x + 100y = 2000 (ii)	
Multiplying equation (i) by 50, we get 50x + 50y = 1250 (iii)	1
Subtracting equation (iii) from equation (ii), we get 50y = 750 \Rightarrow y = 15	
Putting this value in equation (i), we have ⇒ x = 10	1
Q30. Total no of cards i.e. outcomes are 25	
(i) cards marked with numbers which are multiples of 3 are 3,9,15,21,27,33,39 and 45	
So,P (getting a number divisible by 3)= $8/25$	1
(ii) P (not a perfect square)=1-P (perfect square)=1-3/25=22/25	1
(iii) P (multiple of 3 and 5)= $2/25$	1
Q31. Height of cone=24 & Radius=6cm	
Vol of cone=1/3πr ² h =1/3π x6 ² x24 =288πcm ³	1
Let the vol of sphere= $4/3\pi r^3$	
Vol of sphere=Vol of cone	
4/3πr ³ =288π	1
r=6cm	
Therefore the radius of sphere is 6cm	
Surface area of sphere = $4\pi r^2$ = $4x\pi x 6^2$ = 144 π cm ²	1
Q32. Given cosA/(1+sinA) +(1+sinA)/cosA	
On taking the LCM we get,	
= $\{\cos^2 A + (1+\sin A)^2\}/\cos A.(1+\sin A)$	1
using $\sin^2 A + \cos^2 A = 1$	
	1
$=(1+1+2\sin A)/\cos A(1+\sin A)$	
=2(1+sinA)/cosA(1+sinA) =2/cosA =2secA	1
Q33. Let the altitude of the triangle be x cm and its base = (x + 10) cm.	1/2
Area of triangle = 1/2 × Base × height= 1/2 × x × (x + 10)	1/2
According to the Question,	
$\Rightarrow 1/2x(x+10) = 600$	
$\Rightarrow x^2 + 10x - 1200 = 0$	
$\Rightarrow (x + 40) (x - 30) = 0$	1.5
⇒ x = - 40, 30 (As x can't be negative)	
\Rightarrow x = 30	
Altitude of triangle = x = 30 cm	
Base of triangle = x + 10 = 30 + 10 = 40 cm	1/2
Using Pythagoras theorem, hypotenuse = 50 cm	
OR	

Let the numbers are x, x+1, x+2	1/2
As per the question,	
$x^{2} + (x+1)(x+2) = 46$	1
i.e. $2x^2 + 3x + 44 = 0$.	
Now, By solving equation, $x = -22/4$, 4.	1
But x can't be negative. So, Numbers will be 4,5 and 6.	1/2
Q34.	
$P = \frac{2 \sec Q}{2}$	
	1
80 m	
A 45° 30°	
Let \mathbf{P} be the position of a bird at the height of 90 m with the angle of elevation 45	
from A	
Let after 2 seconds, it reaches, at 0 from where its angle of elevation is 20s	
Now in right ADBA	
NOW, IN FIGHT ΔPBA ,	1
$[10145^{\circ}=PB/AB \Rightarrow 1=80/AB]$	-
$\Rightarrow AB=80m(1)$	
In fight ΔQCA , tem 200-OC(AC) 1/(2-00)(AC)	
$1 \text{ tarso}^{\circ} = Q L / A L \Rightarrow 1 / V 3 = 80 / A L$	1
$\Rightarrow AC = 80V3 m(2)$	-
$\therefore B(=A(-AB))$	
=80(3-80=80(3-1))	1
$= 80(1.732 - 1) = 80 \times 0.732 = 58.5077$	1
Now, speed of bird =Distance/time=58.56m/sec=29.28m/sec.	-
UR	
60°	1
	-
60m	
вс	
Let the height of the opposite house be DC=h metre	
In r.t. ΔADE ,	
tan60 ⁰ =DE/AE	
√3=h-60/AE	1
$AE=(h-60)/\sqrt{3(i)}$	
lf r.t. ΔACE,	
tan45 ⁰ = <i>CE/AE</i>	1
AE=60(<i>ii</i>)	-
Comparing (i) and (ii), we get	
(<i>h</i> -60)/ v3=60	1
L	·

<i>h</i> −60=60√3	
<i>h</i> =60√3+60	
<i>h</i> =60(1+√3)	1
Therefore, height of the opposite house is 60(1+√3) metre.	
Q35. $a_2 = 14$ and $a_3 = 18$	
Common difference = $a_3 - a_2 = 18 - 14 = 4 = d$	1
Now	
a ₂ = a+d=14	
a+4=14	
a = 10	1
Using formula for sum of first n terms of an A.P.	
Now, sum of 51 terms	1
$={51(2a+(50)d)}/2$	
={51(20+200)}/2	
={51×220}/2	2
=51×110=5610	
Therefore sum of 51 terms is 5610	
Q36. Using formula & finding Mean=149.8	2.5
Using formula & finding Median=151.5	2.5